THE NITROSONIUM ION, NO⁺, AND ITS VERSATILITY IN TRANSITION METAL ORGANOMETALLIC SYNTHESIS

N. G. CONNELLY and J. D. DAVIES

Department of Inorganic Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (Great Britain) (Received November 29th, 1971) $^{\circ}$

SUMMARY

The versatility of the nitrosonium ion, NO⁺, in organometallic synthesis is illustrated by its reactions with a variety of transition metal compounds. With the species π -C₅H₅M(CO)P(C₆H₅)₃, M=Co and Rh, NOPF₆ reacts in methanol/toluene mixtures to give $[\pi$ -C₅H₅M(NO)P(C₆H₅)₃]PF₆. When M=Ir, however, protonation takes place to give the hydride $[\pi$ -C₅H₅Ir(CO)P(C₆H₅)₃H]PF₆. Halogen-containing organometallics such as π -C₅H₅Fe(CO)₂I, $(\pi$ -C₅H₅)₂VCl₂ and Mn(CO)₅Br react with NOPF₆ in acetonitrile to give the complexes $[\pi$ -C₅H₅Fe(CO)₂-(CH₃CN)]PF₆, $[(\pi$ -C₅H₅)₂V(CH₃CN)₂][PF₆]₂ and $[Mn(CO)_5(CH_3CN)]PF_6$ in which the solvent has replaced the halide ligands. Finally NO⁺ reacts as a one-electron oxidising agent towards $(\pi$ -C₅H₅)₂Fe and $[\pi$ -C₅H₅Fe(CO)SCH₃]₂ giving $(\pi$ -C₅H₅)₂-Fe⁺ and $[\pi$ -C₅H₅Fe(CO)SCH₃]² respectively. Reasons for the formation of the different types of products are discussed.

INTRODUCTION

The nitrosonium ion has recently received attention as a reagent in the preparation of cationic nitrosyls of the type $\{Fe(CO)_2(NO)[P(C_6H_5)_3]_2\}^+$, by replacement of carbon monoxide in the neutral $Fe(CO)_3[P(C_6H_5)_3]_2^1$, and as a one-electron oxidising agent towards species such as trans-Mn(CO)_3[P(CH_3)_2C_6H_5]_2Br². Our studies with this ion have shown that as well as behaving in the above manner it is considerably more versatile in its behaviour towards organometallics than has hitherto been realised. This paper seeks to point out the various reactions of NO⁺ in acetonitrile, or in methanol/toluene mixtures, which can lead to cationic nitrosyls, hydrides and nitriles as well as products of one-electron oxidation.

RESULTS AND DISCUSSION

The nitrosonium ion was first used to prepare cationic nitrosyls by simple replacement of carbon monoxide from π -C₅H₅Re(CO)₃, to give $[\pi$ -C₅H₅Re(CO)₂-(NO)]^{+ 3} and by addition to Ir(CO)[P(C₆H₅)₃]₂Cl to give {Ir(CO)[P(C₆H₅)₃]₂-(NO)Cl}^{+ 4}. We have found that in the series of compounds π -C₅H₅M(CO)P(C₆H₅)₃, M=Co, Rh and Ir, either carbonyl replacement to give nitrosyl complexes, or hydride

J. Organometal. Chem., 38 (1972)

formation via protonation can occur depending on the central metal atom. Thus, in methanol/toluene mixtures NOPF₆ reacts with π -C₅H₅Co(CO)P(C₆H₅)₃ and π -C₅H₅Rh(CO)P(C₆H₅)₃ to give the cationic nitrosyls [π -C₅H₅Co(NO)P(C₆H₅)₃]-PF₆ and [π -C₅H₅Rh(NO)P(C₆H₅)₃]PF₆ as purple and yellow crystalline solids respectively. These diamagnetic complexes are 1/1 electrolytes in acetone (Table 1) and, unlike the carbonyl species from which they are derived, are air-stable in the solid state and in polar solvents. The IR spectra of the new species exhibit one strong band in the region associated with coordinated nitric oxide, the high frequency values of between 1830–1850 cm⁻¹ (Table 2) being typical of cationic nitrosyls. The proton NMR spectra of the complexes (Table 2) show peaks due to cyclopentadienyl and triphenylphosphine groups in the correct ratio of 1/3.

TABLE 1

Complex	Analysis found (calcd.) (%)			Conductivity ^c $(am^2, abm^{-1}, male^{-1})$	M.p.
	С	Н	N	(cm · onn · more)	(0)
$[\pi-C_5H_5Co(NO)P(C_6H_5)_3]PF_6$	49.1	3.7	2.4	147	Dec. >150
$[\pi-C_5H_5Rh(NO)P(C_6H_5)_3]PF_6$	(49.2) 46.0	3.5	2.3	132	194 (with dec.)
	(45.7)	(3.3)	(2.3)	2154	Dec > 150
	(30.4)	(2.9)	(5.1)	515	Dec. >150
[Mn(CO) ₅ (CH ₃ CN)]PF ₆	22.2 (22.1)	0.8 (0.8)	3.7 ^b (3.7)	143 ⁴	Dec. >135

ANALYTICAL, CONDUCTIVITY AND MELTING POINT DATA

" Other analyses: Found: F, 41.4; P, 11.5; V, 8.5. Calcd.: F, 41.2; P, 11.2; V, 9.2%.

^b Other analyses: Found: Mn, 13.9; P, 7.7. Calcd.: Mn, 14.4; P, 8.1%.

 10^{-4} M in acetone at room temp.

^d Measured under nitrogen.

Although these species appear to react with sodium borohydride, methoxide ion and lithium halides we have been unable to isolate nitrosyl-containing products from the reaction mixtures.

The analogous reaction of NOPF₆ with π -C₅H₅Ir(CO)P(C₆H₅)₃ results only in the formation of the known hydride [π -C₅H₅Ir(CO)P(C₆H₅)₃H]PF₆⁵. No evidence for a nitrosyl species has been found. The protonation reaction is possible since nitrosonium salts take part in the following equilibrium in methanol solution:

Such protonations have previously been encountered in the reactions of $M(CO)_3$ -[$P(C_6H_5)_3$]₂, M=Ru and Os, to give { $M(CO)_3$ [$P(C_6H_5)_3$]₂H}⁺¹. The fact that protonation occurs with iridium, whereas nitrosyl formation takes place with Co and Rh is probably a reflection of the more basic nature of the complex of the third row element. The possibility that the use of a phosphine, L, less basic than $P(C_6H_5)_3$ in π -C₅H₅Ir(CO)L could promote formation of [π -C₅H₅Ir(NO)L]⁺ is under study. The alternative possibility, whereby a more basic phosphine L in π -C₅H₅Co(CO)L might lead to protonation on cobalt has been attempted using L=tricyclohexylphosphine. In this case however, nitrosyl formation is still favoured to give $[\pi - C_5H_5Co(NO)P(C_6H_{11})_3]PF_6$.

We have briefly reported on reactions of NOPF₆ in acetonitrile which give cationic acetonitrile complexes by cleavage of the metal-metal bond in $M_2(CO)_{10}$, M = Mn and Re, and by displacement of the arene group in (toluene) $Cr(CO)_3^6$. Further investigations with this solvent show that organometallic compounds containing halogens coordinated to the metal react with NOPF₆ to give species in which the halide ligand is replaced by the solvent. In contrast to reactions described later, no oxidation takes place.

Thus, π -C₅H₅Fe(CO)₂I reacts with NOPF₆ in acetonitrile to give the known $[\pi$ -C₅H₅Fe(CO)₂MeCN] PF₆⁷. The physical properties of the compound are identical to those reported. However, this preparative route allows the complex to be isolated very rapidly in near quantitative yields, and represents a great improvement over the established synthesis⁸.

In a similar reaction, $(\pi - C_5 H_5)_2 VCl_2$ reacts with NOPF₆ to give the dication $[(\pi - C_5 H_5)_2 V(CH_3 CN)_2][PF_6]_2$ as very dark green needles. The solid complex is fairly stable in air but its dark green-brown solutions in polar solvents are slowly decomposed. The IR spectrum exhibits two bands of medium intensity at 2325 cm⁻¹ and 2350 cm⁻¹ due to the coordinated nitrile ligands.

The expected paramagnetism of this formally V^{IV} complex is confirmed by both magnetic susceptibility and ESR measurements. Thus a magnetic moment of 1.69 B.M. has been found which is consistent with one unpaired electron. The room-temperature solution ESR spectrum consists of eight lines due to hyperfine splitting by the ⁵¹V (I = 7/2) nucleus. No ¹⁴N (I = 1) splitting was observed. The $\langle g \rangle$ value of 1.98, and the average hyperfine splitting due to ⁵¹V of 75G are similar to the values found for the related V^{IV} complex (π -C₅H₅)₂VCl₂⁹.

 $Mn(CO)_5Br$ reacts with NOPF₆ in acetonitrile to give [Mn(CO)₅CH₃CN] PF₆ as a white crystalline solid. It is obtained in lower yields than in the reaction of Mn₂-(CO)₁₀ and NOPF₆⁶. Other halo-organometallics such as π -C₅H₅Mo(CO)₃Cl and $(\pi$ -C₅H₅)₂TiCl₂ also react with the nitrosonium ion in acetonitrile but no products have been isolated.

The final mode of reaction of NOPF₆ we have noted is its behaviour as a oneelectron oxidising agent. It has recently been shown that in weakly coordinating solvents such as CH_2Cl_2 or benzene, NO⁺ oxidises species of the type *trans*-Mn- $(CO)_3[P(CH_3)_2C_6H_5]_2Br$ to the corresponding $\{fac-Mn(CO)_3[P(CH_3)_2C_6H_5]_2-Br\}^+$ cation². In acetonitrile however, oxidation of Ni^{II} amines to the corresponding Ni^{III} species was found to occur with coordination of an acetonitrile ligand¹⁰. We have found that even in acetonitrile, one-electron oxidations can be carried out without incorporation of solvent in the products. Thus ferrocene and $[\pi-C_5H_5Fe (CO)SCH_3]_2$ are oxidised to the ferricinium and $[\pi-C_5H_5Fe(CO)SCH_3]_2^+$ cations respectively. It is pertinent to note here that carbonyl containing species such as $[\pi-C_5H_5Fe(CO)SR]_2$ can theoretically undergo either oxidation or nitrosyl replacement reactions. The main factor governing the type of product formed is the oxidation potential of the organometallic complex. It has been shown in the field of transition metal dithiolene chemistry that considerable variation in oxidation and reduction potentials can be caused by the variation of substituent, R, in such species as $M(S_2C_2R_2)_2(z=2 \text{ or } 3)^{11}$. Thus, if by changing $R = CH_3$ to a more electron-with-

J. Organometal. Chem., 38 (1972)

Complex	IR stretching	l frequencies (c	см ⁻¹)		NMR resonance	esa	
	v(C≡0)	v(N=O)	v(C≡N)	Medium	$C_6H_5^h$	C ₆ H ₁₁ ^b	C ₅ H ₅
[<i>n</i> -C ₅ H ₅ C ₀ (NO)P(C ₆ H ₅) ₃]PF ₆		1847 s		Nujol	· ···· · · · · ·		
[<i>n</i> -C ₅ H ₅ C ₆ (NO)P(C ₆ H ₁₁) ₃]PF ₆		1848 s		Nujol	(muu) 77.7		4'77 S
[π-C ₅ H ₅ Rh(NO)P(C ₆ H ₅) ₃]PF ₆		1840 S 1838 S		CH ₂ Cl ₂ Nujol		(.11um .brd) c1.8	4.06 S
[(<i>n</i> -C ₃ H ₅) ₂ V(CH ₃ CN) ₂][PF ₆] ₂		1031 S	2325 m 2360 /241	CH ₂ Cl ₂	('IINM) C2.2		4,U2 S
[Mn(CO) ₅ (CH ₃ CN)]PF ₆	2140 w 2061 vs		(iis) nrcz	unse (CH ₃) ₂ CO			
	2043 (sh)						
^a r scale measured in deuteroacctone ^b Values refer to centre of asymmetri	at 40° (TMS ref c peaks.	erence).					

INFRA-RED AND PROTON MAGNETIC RESONANCE SPECTRAL DATA

J. Organometal. Chem., 38 (1972)

TABLE 2

.

drawing group such as $R = CF_3$ in $[\pi - C_5H_5Fe(CO)SR]_2$ the oxidation potential can be raised sufficiently to disallow oxidation by NO⁺, nitrosyl formation might be preferred. This possibility is being investigated.

CONCLUSION

The results reported here show that the mode of reaction of NO^+ is highly dependent on the solvent system used, and on such properties as the Lewis basicity or redox potential of the reacting organometallic. By consideration of these possible factors, the nitrosonium ion can be used in the preparation of a very wide range of cationic organometallic compounds.

EXPERIMENTAL

All reactions involving nitrosonium salts were carried out under an atmosphere of nitrogen and in dried, degassed solvents. Mn(CO)₅Br¹², π -C₅H₅M(CO)L, M=Co, L=P(C₆H₅)₃, P(C₆H₁₁)₃, M=Rh, L=P(C₆H₅)₃¹³, and π -C₅H₅Fe(CO)₂I¹⁴ were prepared by published methods, NOPF₆ was purchased from Ozark-Mahoning Company and (π -C₅H₅)₂VCl₂ from Alfa Inorganics Ltd.

Micro-analyses were carried out by the microanalytical service of this department and Galbraith Inc. Knoxville, Tennessee. IR spectra were recorded on Perkin– Elmer PE 257 and Beckman IR8 spectrophotometers; NMR spectra were recorded on the Varian T60 instrument.

$[\pi - C_5 H_5 Co(NO) P(C_6 H_5)_3] PF_6$

To 0.42 g of π -C₅H₅Co(CO)P(C₆H₅)₃ in a mixture of 20 ml benzene (or toluene) and 10 ml methanol was added 0.27 g of solid NOPF₆. The red solution became dark purple-brown and carbon monoxide was evolved.

After stirring had been continued for 10 min the product began to separate as a dark purple solid. Addition of ether (approximately 25 ml) completed the precipitation. The complex was recrystallised from dichloromethane/hexane to give 0.46 g of $[\pi$ -C₅H₅Co(NO)P(C₆H₅)₃]PF₆ as dark purple crystals. Yield: 81% based on π -C₅H₅Co(CO)P(C₆H₅)₃. $[\pi$ -C₅H₅Co(NO)P(C₆H₅)₃]PF₆ is soluble in polar solvents such as dichloromethane and acetone to give air-stable purple-brown solutions.

$[\pi - C_5 H_5 Co(NO) P(C_6 H_{11})_3] PF_6$ and $[\pi - C_5 H_5 Rh(NO) P(C_6 H_5)_3] PF_6$

These were prepared by the above method in 38% and 84% yields respectively. They are air-stable purple-brown and yellow complexes respectively with properties similar to those of $[\pi$ -C₅H₅Co(NO)P(C₆H₅)₃]PF₆.

$[\pi - C_5 H_5 Fe(CO)_2(CH_3 CN)]PF_6$

To 0.6 g of π -C₅H₅Fe(CO)₂I in 10 ml of acetonitrile was added 0.35 g of solid NOPF₆. The initial brown solution rapidly became deep orange and NO gas was evolved. After stirring for 5 min the solution was filtered and 100 ml of ether added. The resulting yellow crystalline solid (0.65 g) was dissolved in acetone and rapidly

J. Organometal. Chem., 38 (1972)

precipitated by adding ether. The yellow product was filtered, washed well with ether and air-dried to give 0.57 g of $[\pi$ -C₅H₅Fe(CO)₂(CH₃CN)] PF₆. Yield : 79% based on π -C₅H₅Fe(CO)₂I.

$[(\pi - C_5 H_5)_2 V(CH_3 CN)_2][PF_6]_2$

To a green solution of 0.5 g $(\pi$ -C₅H₅)₂VCl₂ in 15 ml acetonitrile was added an excess of solid NOPF₆ (about 0.5 g). The resulting dark green-brown solution was stirred for 10 min, filtered and then treated with 50 ml ether. After 15 min the oil which had separated was isolated by decantation from the mother liquor. Slow evaporation at the water pump of an acetone solution of the oil gave, in the presence of methanol, very dark green needles of the product. Yield: 0.33 g, 30% based on $(\pi$ -C₅H₅)₂VCl₂. [(C₅H₅)₂V(CH₃CN)₂][PF₆]₂ gives deep green-brown solutions in polar solvents such as acetonitrile and acetone. The compound is slowly decomposed in the solid state and more rapidly decomposed in solution.

$[Mn(CO)_{5}(CH_{3}CN)]PF_{6}$

To a pale yellow solution of 0.3 g of $Mn(CO)_5Br$ in 10 ml of acetonitrile was added an excess of solid NOPF₆ (about 0.35 g). NO gas was evolved as the solution was rapidly stirred. After 5 min the dark yellow solution was filtered. On addition of approximately 50 ml of ether an off-white solid formed which, when dissolved in acetone and precipitated by ether, gave 0.09 g of white micro-crystals of the product. Yield: 22% based on $Mn(CO)_5Br. [Mn(CO)_5(CH_3CN)] PF_6$ is soluble in acetone and acetonitrile to give colourless solutions which slowly decompose in air.

ACKNOWLEDGEMENTS

We would like to thank Dr. M. Camp and Mr. R. Mason (of the University of Wisconsin) for magnetic susceptibility and ESR spectral measurements. One of us (N.G.C.) thanks Prof. L. F. Dahl for the facilities provided at the University of Wisconsin for part of this work.

REFERENCES

- 1 B. F. G. Johnson and J. A. Segal, J. Organometal. Chem., 31 (1971) C79.
- 2 R. H. Reimann and E. Singleton, J. Organometal. Chem., 32 (1971) C44.
- 3 E. O. Fischer and H. Strametz, Z. Naturforsch. B, 23 (1968) 278.
- 4 D. J. Hodgson, N. C. Payne, J. A. McGinnity, R. G. Pearson and J. A. Ibers, J. Amer. Chem. Soc., 90 (1968) 4486.
- 5 A. J. Oliver and W. A. G. Graham, Inorg. Chem., 9 (1970) 2653.
- 6 N. G. Connelly and L. F. Dahl, Chem. Commun., (1970) 880.
- 7 P. M. Treichel, R. L. Shubkin, K. W. Barnett and D. Reichard, Inorg. Chem., 5 (1966) 1177.
- 8 E. O. Fischer and E. Moser, Inorg. Syn., 12 (1970) 41.
- 9 J. C. W. Chien and C. R. Boss, J. Amer. Chem. Soc., 83 (1961) 3767.
- 10 E. K. Barefield and D. H. Busch, Chem. Commun., (1970) 522.
- 11 J. A. McCleverty, Progr. Inorg. Chem., 10 (1968) 49.
- 12 R. B. King, Organometal. Syn., 1 (1965) 174.
- 13 A. J. Hart-Davis and W. A. G. Graham, Inorg. Chem., 9 (1970) 2658.
- 14 R. B. King, Organometal. Syn., 1 (1965) 175.
- J. Organometal. Chem., 38 (1972)